
www.manaraa.com

CS 683: Advanced Design and Analysis of

Algorithms

February 13, 2008
Lecturer: Lukas Kroc

Scribes: Shaomei Wu (sw475@cornell.edu) ∗

1 Recap: Factor Graph

Let’s continue our journey through graphical models. Last time, we defined the
problem we try to solve:

1. Given a discreet system with state vectors (configurations) ~x, each xi ∈ D;

2. Each configuration has a weight associated with it, weight(~x) ∈ R+
0 .

We also introduced two graphical models to represent the problem given above:
Bayesian Network and Factor Graph. Today’s lecture will be based on factor
graph.

1.1 Configuration

A factor graph is a bipartite graph consisting of two kinds of nodes:

1. variable nodes (©): stand for the variable xi’s;

2. factor nodes(¤): stand for the functions fα.

We also define the weight associated with each state as:

weight(~x) : =
∏
α

fα(~xα) ∈ R+
0

For example, the following factor graph is constructed to represent the SAT
problem

(x ∨ y)︸ ︷︷ ︸
α

∧ (¬x ∨ z)︸ ︷︷ ︸
β

∗Many thanks to Lukas for his help at revising the initial scribe of notes.

1

www.manaraa.com

Figure 1: Factor graph for example SAT problem

Also, we define

fα(x, y) =
{

1 if x ∨ y = True;
0 if x ∨ y = False.

fβ(x, z) =
{

1 if ¬x ∨ z = True;
0 if ¬x ∨ z = False.

1.2 Probabilistic interpretation

To approach the solution of SAT problem with factor graphs, we need to intro-
duce probabilitity into our model. Here we define that:

p(~x) := Pr(~X = ~x) =
1
Z

∏
α

fα(~x),

where ~xα is a projection of ~x to only variables that appear in clause α. The
normalization constant Z is defined as:

Z :=
∑

~x

∏
α

fα(~xα).

The queries we can propose include:

a) Z=? What is the value of Z? By finding out whether Z is zero or not, we
would be able to solve SAT problem.

b) Marginal probabilities:

pi(xi) := Pr[Xi = xi] =
∑

~x−i

Pr[~X = ~x]

2

www.manaraa.com

where the sum is across all possible value combinations of all variables except
xi. For some variable xi, pi(xi = True) represents the fraction of solutions
where the variable has value True. This information can be used to find a
solution: pick a variable that has the highest marginal and set it its preferred
way, thus simplifying the problem. Recompute marginals and repeat until
all variables have been assigned a value (so called decimation).

2 Today: Belief Propagation Algorithm (BP)

Objective: “compute” marginal probabilities AND value of Z for given factor
graph. However, as we know, marginals and Z are probably not solvable, since
factor graph can represent a very difficult problem such as SAT. In this lec-
ture, we will introduce a method to approximate the solution instead of directly
solving the problem. Today’s lecture is based on Jonathan S. Yedidia, William
T. Freeman and Yair Weiss’s paper “Constructing Free Energy Approximations
and Generalized Belief Propagation Algorithms”(2004)[1].

2.1 Algorithm Framework

To compute pi(xi) and Z, our basic intuition is to get rid of the exponential∑
in those formulas. To implement this intuition, the algorithm is design as

follows:

A) Design a parameterized1 family of probability distributions where it is easy
to answer previous queries. We call such probability distributions b(~x).

For example, a family of normal distribution is parameterized with a set of
(µ, σ2) pairs.

B) By tuning b(~x)’s parameters, we try to minimize the difference between p(·)
and b(·).

C) Use b’s answers to queries as estimates of the actual p’s answers.

Let’s establish the paradigm with an example. In the following figure, we
use a box to represent the space of all possible p’s. Even though we don’t know
the exact position of p(~X = ~x) in the space, it is fixed and pre-existing. Given a
set of b(.)’s, if we can estimate the distance of each b(.) point to the true solution
p(.), we will thus be able to compare the distances and find the closest b(.) to p(.).

1The number of parameters should be large enough to approximate the optimal solution,
but reasonably small to work with.

3

www.manaraa.com

Although there is no guarantee that we can find a b(.) that is absolutely
precise, by carefully defining the distance metric and making a reasonable as-
sumption about the distribution b(.), we can approach the problem in a scalable
and practical way.

The important questions left to us are:

a) How to define the distance between b(.) and p(.)?

b) How to find the reasonable distribution b(.)?

2.2 Brief Propagation Steps

Here we present the technical process to establish the parameters and associated
distribution for b(.), and to estimate the distance between b(.) and p(.).

A1: Calculate b(~x). Consider b(~x) such that

b(~x) =
∏

α bα(~xα)∏
i bi(xi)di−1

.

Here b(~x) is the joint probability. bα(~xα)’s and bi(xi)’s are the marginal prob-
abilities, and di is a degree of the variable in the factor graph (e.g. how many
times it occurs in some clause). This condition is true for p(.) (and therefore
b(.) can exactly correspond to it) when the factor graph is a tree (i.e., no loop
exists).

4

www.manaraa.com

Hence we have bα(~xα)’s and bi(xi)’s as the parameters for b(~x). Since the
number of variables appearing in each clause is polynomial in the number of
variable, and the possible values for each variable are just 0,1, we can list all
the xi and xα and assign an initial bα(~xα) and bi(xi) with them, as long as the
following conditions are fulfilled.

Conditions for parameters:

(?)





∑
xi

bi(xi) = 1, ∀i;∑
~xα

bα(~xα) = 1, ∀α;∑
~xα−i

b~α(~xα) = bi(ωi), ∀i,∀α3i,∀ωi.

There is also an implicit assumption that all variable values are in [0, 1]. Note
that we have to give up satisfying

∑
~x b(~x) = 1, because it is computationally

too expensive to add in this list of constraints (the sum is exponential).

B1: Use KL-divergence DKL(b||p) as a difference measure. KL-divergence
is defined as:

DKL(b||p) =
∑

~x

b(~x) log
b(~x)
p(~x)

.

Here, b(~x) is already defined in A1, and p(~x) can be computed by

p(~x) =
1
Z

∏
α

fα(xα).

The properties of KL-divergence include:

1. DKL(b||p) ≥ 0;

2. DKL(b||p) = 0 iff b ≡ p.

We define
Dist(bi(xi), · · · , bα(xα), · · ·) := DKL(b||p) (1)

to be a function measuring difference between p(.) and b(.), parameterized by
b(.)’s parameters (p(.) is unknown, but fixed).

B2: Massage the formula for DKL(b||p) By rearranging terms in (1), we
can rewrite Dist(bi(xi), · · · , bα(xα), · · ·) so that the only terms in it are:

some function of(bi(xi), bα(~xα), fα(~xα), di)− log Z.

Here fα(~xα), and di can be found from the factor graph, bi(xi) and bα(~xα)
are variables we will use to optimize, with the objective of achieving the minimal
value of DKL(b||p). And Z is unknown but constant, so it does not matter for
the optimization.

5

www.manaraa.com

B3: Use method of Lagrange multipliers to solve the optimization
problem. We want to solve:

min
bi(xi),bα(~xα)

Dist(bi(xi), bα(~xα), fα(~xα), di), subject to (?).

We will use the method of Lagrange multipliers to turn it into an uncon-
strained problem, and then search for stationary points of Dist(·) s.t. (?) where
bi(xi), bα(~xα) are real parameters.

There are different ways to get the optimal, the Brief Propagation algorithm
uses the following iteration equations (a lot of derivation is skipped here):

ni→α(xi) =
∏

β3i\α
mβ→i(xi);

mα→i(xi) ∝
∑
xα\i

fα(~xα)
∏

j∈α\i
nj→α(xj)

where β 3 i\α are all clauses where variable i appears except for clause α. Here
we can see that the values of n’s in current iteration depend on the values of
m’s, while the values of m’s depend on the values of n’s in previous iterations.
Starting at a random initial values for m’s and n’s, this is how the “messages”
get propagated and updated.

C1: Finish Up. In the end, we will get the marginals as:

bi(xi) ∝
∏

α3i

mα→i(xi).

The marginals bα(~xα) can be computed in a similar manner. Also, assuming
that we have found the optimal solution, we get DKL(b||p) = 0. Therefore, the
value of Z can be computed by:

Z = exp
(
some function of(bi(xi), bα(~xα), fα(~xα), di)

)
.

We have provided estimates to the queries.

References

[1] J. YEDIDIA, W. FREEMAN, and Y. WEISS. Constructing free energy ap-
proximations and generalized belief propagation algorithms. 2004.

6

